
DOMBuilder Documentation
Release 2.1.5

Jonathan Buchanan

Sep 27, 2017

Contents

1 DOMBuilder Core 3

2 DOM Mode 13

3 HTML Mode 17

4 Templates 23

5 News for DOMBuilder 25

6 License 31

7 Quick Guide 33

8 Installation 35

i

ii

DOMBuilder Documentation, Release 2.1.5

DOMBuilder takes some of the pain out of dynamically creating HTML content in JavaScript and supports generating
multiple types of output from the same inputs.

Contents 1

DOMBuilder Documentation, Release 2.1.5

2 Contents

CHAPTER 1

DOMBuilder Core

This page documents the DOMBuilder object implemented in the core DOMBuilder.js script.

Note: For brevity, some further examples will assume that element functions are available in the global scope.

Element Functions

Element functions accept flexible combinations of input arguments, creating a declarative layer on top of
DOMBuilder.createElement().

DOMBuilder.elements is an Object containing a function for each valid tag name declared in the HTML 4.01
Strict DTD, Frameset DTD and HTML5 differences from HTML4 W3C Working Draft, referenced by the correspond-
ing tag name in uppercase.

DOMBuilder.elements
Element functions which create contents based on the current value of DOMBuilder.mode

An exhaustive list is available below in Element Function Names.

When called, these functions will create an element with the corresponding tag name, giving it any attributes which
are specified as properties of an optional Object argument and appending any child content passed in.

Element functions accept the following variations of arguments:

Element Creation Function Arguments
(attributes, child1, ...) an attributes Object followed by an arbitrary number of children.
(attributes, [child1, ...]) an attributes Object and an Array of children.
(child1, ...) an arbitrary number of children.

([child1, ...]) an Array of children.

Example:

3

http://www.w3.org/TR/html4/sgml/dtd.html
http://www.w3.org/TR/html4/sgml/framesetdtd.html
http://dev.w3.org/html5/html4-differences/#new-elements

DOMBuilder Documentation, Release 2.1.5

The following function creates a <table> representation of a list of objects, taking advantage of the flexible combi-
nations of arguments accepted by element functions:

/**
* @param headers a list of column headings.

* @param objects the objects to be displayed.

* @param properties names of object properties which map to the

* corresponding columns.

*/
function createTable(headers, objects, properties) {

return TABLE({cellSpacing: 1, 'class': 'data sortable'}
, THEAD(TR(TH.map(headers)))
, TBODY(

TR.map(objects, function(obj) {
return TD.map(properties, function(prop) {
if (typeof obj[prop] == 'boolean') {
return obj[prop] ? 'Yes' : 'No'

}
return obj[prop]

})
})

)
)

}

Given this function, the following code...

createTable(
['Name', 'Table #', 'Vegetarian'],
[{name: 'Steve McMeat', table: 3, veggie: false},
{name: 'Omar Omni', table: 5, veggie: false},
{name: 'Ivana Huggacow', table: 1, veggie: True}],

['name', 'table', 'veggie']
)

...would produce output corresponding to the following HTML:

<table class="data sortable" cellspacing="1">
<thead>
<tr>

<th>Name</th>
<th>Table #</th>
<th>Vegetarian</th>

</tr>
</thead>
<tbody>
<tr>

<td>Steve McMeat</td>
<td>3</td>
<td>No</td>

</tr>
<tr>

<td>Omar Omni</td>
<td>5</td>
<td>No</td>

</tr>
<tr>
<td>Ivana Huggacow</td>
<td>1</td>

4 Chapter 1. DOMBuilder Core

DOMBuilder Documentation, Release 2.1.5

<td>Yes</td>
</tr>

</tbody>
</table>

Map Functions

New in version 1.3.

Map functions provide a shorthand for:

• creating elements for each item in a list, via DOMBuilder.map()

• wrapping elements created for each item in a list with a fragment, via DOMBuilder.fragment.map()

DOMBuilder.map(tagName, defaultAttributes, items[, mappingFunction[, mode]])
Creates an element for (potentially) every item in a list.

Arguments

• tagName (String) – the name of the element to create for each item in the list.

• defaultAttributes (Object) – default attributes for the element.

• items (Array) – the list of items to use as the basis for creating elements.

• mappingFunction (Function) – a function to be called with each item in the list, to
provide contents for the element which will be created for that item.

• mode (String) – the DOMBuilder mode to be used when creating elements.

If provided, the mapping function will be called with the following arguments:

mappingFunction(item, attributes, loopStatus)

Contents returned by the mapping function can consist of a single value or a mixed Array.

Attributes for the created element can be altered per-item by modifying the attributes argument, which will
initially contain the contents of defaultAttributes, if it was provided.

The loopStatus argument is an Object with the following properties:

index 0-based index of the current item in the list.

first true if the current item is the first in the list.

last true if the current item is the last in the list.

The mapping function can prevent an element from being created for a given item altogether by returning null.

If a mapping function is not provided, a new element will be created for each item in the list and the item itself
will be used as the contents.

Changed in version 2.0: defaultAttributes is now required - flexible arguments are now handled by the
map functions exposed on element creation functions; the mode argument was added; a loop status object is
now passed when calling the mapping function.

This function is also exposed via element creation functions. Each element creation function has its own map function,
which allows more flexible arguments to be passed in.

1.2. Map Functions 5

DOMBuilder Documentation, Release 2.1.5

Element Creation Function .map() Arguments
(defaultAttributes, [item1, ...],
mappingFunction)

a default attributes attributes object, a list of items and a
mapping Function.

([item1, ...], mappingFunction) a list of items and a mapping Function.
([item1, ...]) a list of items, to be used as element content as-is.

This example shows how you could make use of the attributes and itemIndex arguments to the mapping
function to implement table striping:

TR.map(rows, function(row, attributes, loop) {
attributes['class'] = (loop.index % 2 == 0 ? 'stripe1' : 'stripe2')
return TD.map(row)

})

Core API

These are the core functions whose output can be controlled using Output Modes.

DOMBuilder.createElement(tagName[, attributes[, children[, mode]]])
Creates an HTML element with the given tag name, attributes and children, optionally with a forced output
mode.

Arguments

• tagName (String) – the name of the element to be created.

• attributes (Object) – attributes to be applied to the new element.

• children (Array) – childen to be appended to the new element.

• mode (String) – the mode to be used to create the element.

If children are provided, they will be appended to the new element. Any children which are not elements or
fragments will be coerced to String and appended as text nodes.

Changed in version 2.0: Now delegates to the configured or specified mode to do all the real work.

DOMBuilder.textNode(text[, mode])
Creates a Text Node or its output mode equivalent, optionally with a forced output mode.

This function is provided should you ever need to appendChild() a String to a previously-created HTML
element when writing mixed output code.

Arguments

• text (String) – contents for the Text Node.

• mode (String) – the mode to be used to create the Text Node.

New in version 2.1.

DOMBuilder.fragment()
Creates a container grouping any given elements together without the need to wrap them in a redundant element.
This functionality was for DOM Mode - see Document Fragments - but is supported by all output modes for the
same grouping purposes.

Supported argument formats are:

6 Chapter 1. DOMBuilder Core

DOMBuilder Documentation, Release 2.1.5

Fragment Creation Arguments
(child1, ...) an arbitrary number of children.

([child1, ...]) an Array of children.

Output Modes

Changed in version 2.0: Output modes now sit independent of DOMBuilder core and are pluggable.

DOMBuilder provides the ability to register new modes, which make use of the arguments given when elements and
fragments are created.

DOMBuilder.addMode(mode)
Adds a new mode and exposes an API for it in the DOMBuilder object under a property corresponding to the
mode’s name.

The first mode to be added will have its name stored in DOMBuilder.mode, making it the default output
mode.

Arguments

• mode (Object) – Modes are defined as an Object with the following properties.

name the mode’s name.

createElement(tagName, attributes, children) a Function which takes
a tag name, attributes object and list of children and returns a content object.

fragment(children) a Function which takes a list of children and returns a content
fragment.

isModeObject(object) (optional) a Function which can be used to eliminate false
positives when DOMBuilder is trying to determine whether or not an attributes object
was given - it should return true if given a mode-created content object.

api (optional) an Object defining a public API for the mode’s implementation, exposing
variables, functions and constructors used in implementation which may be of interest to
anyone who wants to make use of the mode’s internals.

apply (optional) an Object defining additional properties to be added to the object DOM-
Builder creates for easy access to mode-specific element functions (see below). Just as
element functions are a convenience layer over DOMBuilder.createElement(),
the purpose of the apply property is to allow modes to provde a convenient way to
access mode-specific functionality.

Any properties specified with apply will also be added to objects passed into
DOMBuilder.apply() when a mode is specified.

When a mode is added, a DOMBuilder.<mode name> Object is also created, containing element functions
which will always create content using the given mode and any additional properties which were defined via the
mode’s apply properties.

New in version 2.0.

Example: a mode which prints out the arguments it was given:

DOMBuilder.addMode({
name: 'log'

, createElement: function(tagName, attributes, children) {
console.log(tagName, attributes, children)

1.4. Output Modes 7

DOMBuilder Documentation, Release 2.1.5

return tagName
}

})

>>> DOMBuilder.build(article, 'log')
h2 Object {} ["Article title"]
p Object {} ["Paragraph one"]
p Object {} ["Paragraph two"]
div Object { class="article"} ["h2", "p", "p"]

Setting a mode’s name as DOMBuilder.mode makes it the default output format.

DOMBuilder.mode
Determines which mode DOMBuilder.createElement() and DOMBuilder.fragment()will use by
default.

Provided Modes

Implementations of the following default modes are provided for use:

Output modes:

Name Outputs Documentation
'dom' DOM Elements DOM Mode
'html' MockElement() objects which toString() to HTML4 HTML Mode

Feature modes:

Name Outputs Documentation
'template' TemplateNode() objects which render an output format Templates

Temporarily Switching Mode

If you’re going to be working with mixed output types, forgetting to reset DOMBuilder.modewould be catastrophic,
so DOMBuilder provides DOMBuilder.withMode() to manage it for you.

DOMBuilder.withMode(mode, func[, args...])
Calls a function, with DOMBuilder.mode set to the given value for the duration of the function call, and
returns its output.

Any additional arguments passed after the func argument will be passed to the function when it is called.

>>> function createParagraph() { return P('Bed and', BR(), 'BReakfast') }
>>> DOMBuilder.mode = 'dom'
>>> createParagraph().toString() // DOM mode by default
"[object HTMLParagraphElement]"
>>> DOMBuilder.withMode('HTML', createParagraph).toString()
"<p>Bed and
BReakfast</p>"

Referencing Element Functions

Some options for convenient ways to reference element functions.

Create a local variable referencing the element functions you want to use:

8 Chapter 1. DOMBuilder Core

DOMBuilder Documentation, Release 2.1.5

var el = DOMBuilder.dom
el.DIV('Hello')

Use the with statement to put the element functions of your choice in the scope chain for variable resolution:

with (DOMBuilder.dom) {
DIV('Hello')

}

You could consider the with statement misunderstood; some consider with Statement Considered Harmful
the final word on using the with statement at all, but to quote The Dude - yeah, well, y’know, that’s just,
like, your opinion, man. It’s actually a pretty nice fit for builder and templating code in which properties
are only ever read from the scoped object and it accounts for a significant proportion of property lookups.

Just be aware that the with statement will be considered a syntax error if you wish to opt-in to EC-
MAScript 5’s strict mode in the future, but there are ways are ways to mix strict and non-stict code, as it
can be toggled at the function level.

Add element functions to the global scope using DOMBuilder.apply():

DOMBuilder.apply(window, 'dom')
DIV('Hello')

Filling the global scope full of properties isn’t something which should be done lightly, but you might be
ok with it for quick scripts or for utilities which you’ll be using often and which are named in ways which
are unlikely to conflict with your other code, such as DOMBuilder’s upper-cased element functions.

This particular piece of documentation won’t judge you - it’s your call.

DOMBuilder.apply(context[, mode])
Adds element functions to the given object, optionally for a specific mode.

Arguments

• context (Object) – An object which element functions will be added to.

• mode (String) – The name of a mode for which mode-specific element functions and
convenience API should be added.

If not given, element functions from DOMBuilder.elements will be used.

Changed in version 2.0: The context argument is now required; added the mode argument.

Element Function Names

An exhaustive list of the available element function names.

1.6. Element Function Names 9

https://developer.mozilla.org/en/JavaScript/Reference/Statements/with
http://webreflection.blogspot.com/2009/12/with-worlds-most-misunderstood.html
http://www.yuiblog.com/blog/2006/04/11/with-statement-considered-harmful/
http://www.imdb.com/title/tt0118715/quotes
https://developer.mozilla.org/en/JavaScript/Strict_mode
https://developer.mozilla.org/en/JavaScript/Strict_mode

DOMBuilder Documentation, Release 2.1.5

Element Function Names
A ABBR ACRONYM AD-

DRESS
AREA ARTI-

CLE
ASIDE AUDIO B BDI

BDO BIG BLOCK-
QUOTE

BODY BR BUT-
TON

CAN-
VAS

CAP-
TION

CITE CODE

COL COL-
GROUP

COM-
MAND

DATAL-
IST

DD DEL DE-
TAILS

DFN DIV DL

DT EM EMBED FIELD-
SET

FIGCAP-
TION

FIG-
URE

FOOTER FORM FRAME FRAME-
SET

H1 H2 H3 H4 H5 H6 HR HEAD HEADERHGROUP
HTML I IFRAME IMG INPUT INS KBD KEY-

GEN
LA-
BEL

LEG-
END

LI LINK MAP MARK META ME-
TER

NAV NO-
SCRIPT

OB-
JECT

OL

OPT-
GROUP

OP-
TION

OUTPUT P PARAM PRE PROGRESSQ RP RT

RUBY SAMP SCRIPT SEC-
TION

SELECT SMALL SOURCE SPAN STRONGSTYLE

SUB SUM-
MARY

SUP TA-
BLE

TBODY TD TEXTAREATFOOT TH THEAD

TIME TITLE TR TRACK TT UL VAR VIDEO WBR

Building from Arrays

New in version 2.0.

To make use of DOMBuilder’s Output Modes without using the rest of its API, you can define HTML elements
as nested Arrays, where each array represents an element and each element can consist of a tag name, an optional
Object defining element attributes and an arbitrary number of content items.

For example:

Input Sample HTML Output
['div'] <div></div>
['div', {id: 'test'}] <div id="test"></div>
['div', 'content'] <div>content</div>
['div', {id: 'test'}, 'content'] <div id="test">content</div>
['div', 'oh, ', ['span', 'hi!']] <div>oh, hi!</div>

To create content from a nested Array in this format, use:

DOMBuilder.build(contents[, mode])
Builds the specified type of output from a nested Array representation of HTML elements.

Arguments

• contents (Array) – Content defined as a nested Array

• mode (String) – Name of the output mode to use. If not given, defaults to
DOMBuilder.mode

var article =
['div', {'class': 'article'}
, ['h2', 'Article title']
, ['p', 'Paragraph one']

10 Chapter 1. DOMBuilder Core

DOMBuilder Documentation, Release 2.1.5

, ['p', 'Paragraph two']
]

>>> DOMBuilder.build(article, 'html').toString()
<div class="article"><h2>Article title</h2><p>Paragraph one</p><p>Paragraph two</p></
→˓div>

For convenience, id and class attributes can also be specified via the tag name, like so:

>>> DOMBuilder.build(['div#id', 'content'], 'html').toString()
<div id="id">content</div>

>>> DOMBuilder.build(['div.class', 'content'], 'html').toString()
<div class="class">content</div>

You can specify multiple classes:

>>> DOMBuilder.build(['div.class1.class2', 'content'], 'html').toString()
<div class="class1 class2">content</div>

If you want to specify both, the id must be specified first, or it will be skipped:

>>> DOMBuilder.build(['div#id.class', 'content'], 'html').toString()
<div id="id" class="class">content</div>

>>> DOMBuilder.build(['div.class#id', 'content'], 'html').toString()
<div class="class">content</div>

If you omit a tag name but specify an id/class, the tag name will default to 'div':

>>> DOMBuilder.build(['#id.class', 'content'], 'html').toString()
<div id="id" class="class">content</div>

You can create Document Fragments by providing '#document-fragment' as the tag name - this is useful if you
want to insert a number of elements at the same time without needing to wrap them in another element

var articles =
['#document-fragment'
, ['div.article', 'Article 1']
, ['div.article', 'Article 2']
]

>>> DOMBuilder.build(articles, 'html').toString()
<div class="article">Article 1</div><div class="article">Article 2</div>

>>> DOMBuilder.build(articles, 'dom').toString()
[object DocumentFragment]

You can also use the element functions and core API to create array representations of HTML elements, by setting
DOMBuilder.mode to null and using DOMBuilder.elements, or directly by using the element functions
defined in DOMBuilder.array:

DOMBuilder.array
Element functions which will always create nested element Array output.

This is the default output format if DOMBuilder.mode is null, effectively making it a null mode.

1.7. Building from Arrays 11

DOMBuilder Documentation, Release 2.1.5

12 Chapter 1. DOMBuilder Core

CHAPTER 2

DOM Mode

DOM mode provides an output mode which generates DOM Elements from DOMBuilder.createElement()
calls and DOM DocumentFragments from DOMBuilder.fragment() calls.

The DOM mode API is exposed through DOMBuilder.modes.dom.api.

Mode-specific element functions are exposed through DOMBuilder.dom.

DOMBuilder.dom
Element functions which will always create DOM Element output.

New in version 2.0.

Attributes

Some attributes are given special treatment based on their name.

Event Handlers

Event handlers can be specified by supplying an event name as one of the element’s attributes and an event handling
function as the corresponding value. Any of the following events can be registered in this manner:

Event Names
blur focus focusin focusout load resize
scroll unload click dblclick mousedown mouseup
mousemove mouseover mouseout mouseenter mouseleave change
select submit keydown keypress keyup error

These correspond to events which have jQuery shortcut methods, which will be used for event handler registration if
jQuery is available, otherwise legacy event registration will be used.

For example, the following will create a text input which displays a default value, clearing it when the input is focused
and restoring the default if the input is left blank:

13

http://api.jquery.com/category/events/

DOMBuilder Documentation, Release 2.1.5

var defaultInput =
el.INPUT({

type: 'text', name: 'email'
, value: 'email@host.com', defaultValue: 'email@host.com'
, focus: function() {

if (this.value == this.defaultValue) {
this.value = ''

}
}

, blur: function() {
if (this.value == '') {

this.value = this.defaultValue
}

}
}

)

Other ‘Special’ Attributes

Other attributes which trigger special handling or explicit compatibility handling between DOM and HTML modes.

innerHTML If you specify an innerHTML attribute, the given String will be the sole source used to provide the
element’s contents, even if you pass more contents in as arguments.

• In DOM mode, the element’s innerHTML property will be set and no further children will be appended,
even if given.

• In HTML mode, the given HTML will be used, unescaped, as the element’s contents.

Document Fragments

A DOM DocumentFragment is a lightweight container for elements which allows you to append its entire contents
with a single call to the destination element’s appendChild() method.

If you’re thinking of adding a wrapper <div> solely to be able to insert a number of sibling elements at the same time,
a DocumentFragment will do the same job without the need for the redundant element. This single append function-
ality also makes it a handy container for content which needs to be inserted repeatedly, calling cloneNode(true)
for each insertion.

DOMBuilder provides a DOMBuilder.fragment() wrapper function, which allows you to pass all the contents
you want into a DocumentFragment in one call, and also allows you make use of this functionality in HTML mode
by creating equivalent Mock DOM Objects as appropriate. This will allow you to, for example, unit test functionality
you’ve written which makes use of DocumentFragment objects by using HTML mode to verify output against HTML
strings, rather than against DOM trees.

See http://ejohn.org/blog/dom-documentfragments/ for more information about DocumentFragment objects.

Mapping Fragments

DOMBuilder.fragment.map(items, mappingFunction)
Creates a fragment wrapping content created for (potentially) every item in a list.

Arguments

• items (Array) – the list of items to use as the basis for creating fragment contents.

14 Chapter 2. DOM Mode

http://www.w3.org/TR/REC-DOM-Level-1/level-one-core.html#ID-B63ED1A3
http://ejohn.org/blog/dom-documentfragments/

DOMBuilder Documentation, Release 2.1.5

• mappingFunction (Function) – a function to be called with each item in the list, to
provide contents for the fragment.

The mapping function will be called with the following arguments:

mappingFunction(item, itemIndex)

The function can indicate that the given item shouldn’t generate any content for the fragment by returning null.

Contents created by the function can consist of a single value or a mixed Array.

This function is useful if you want to generate sibling content from a list of items without introducing redundant
wrapper elements.

For example, with a newforms FormSet object, which contains multiple Form objects. If you wanted to generate a
heading and a table for each form object and have the whole lot sitting side-by-side in the document:

var formFragment = DOMBuilder.fragment.map(formset.forms, function(form, loop) {
return [
H2('Widget ' + (loop.index + 1)),
TABLE(TBODY(

TR.map(form.boundFields(), function(field) {
return [TH(field.labelTag()), TD(field.asWidget())]

})
))

]
})

Appending formFragment would result in the equivalent of the following HTML:

<h2>Widget 1</h2>
<table> ... </table>
<h2>Widget 2</h2>
<table> ... </table>
<h2>Widget 3</h2>
<table> ... </table>
...

2.2. Document Fragments 15

https://github.com/insin/newforms

DOMBuilder Documentation, Release 2.1.5

16 Chapter 2. DOM Mode

CHAPTER 3

HTML Mode

HTML mode provides an output mode which generates MockElement() objects from DOMBuilder.
createElement() calls and MockFragment() objects from DOMBuilder.fragment() calls.

The HTML mode API is exposed through DOMBuilder.modes.html.api.

Mode-specific element and convenience functions are exposed through DOMBuilder.html.

DOMBuilder.html
Contains element functions which always create Mock DOM Objects (which toString() to HTML) and
convenience functions related to HTML Escaping.

New in version 2.0.

Mock DOM Objects

In HTML mode, DOMBuilder will create mock DOM objects which implement a small subset of the Node interface
operations available on their real counterparts. Calling toString() on these objects will produce the appropriate
type of HTML based on the mode at the time they and their contents were created.

With foreknowledge of the available operations (and requests for additional operations which would be useful), it’s
possible to write complex content creation code which works seamlessly in both DOM and HTML modes.

HTMLNode

The base constructor for mock DOM objects implements the following subset of the Node interface.

class HTMLNode([childNodes])
Creates an HTMLNode with a list of initial childNodes - this constructor should only be called by child con-
structors which are inheriting from it.

Arguments

• childNodes (Array) – initial child nodes

17

http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-1950641247
https://github.com/insin/DOMBuilder/issues

DOMBuilder Documentation, Release 2.1.5

Attributes:

HTMLNode.firstChild
This node’s first child node, or null if it has no child nodes.

New in version 2.1.

HTMLNode.childNodes
This node’s child nodes.

Methods::

HTMLNode.appendChild(node)
Adds to the list of child nodes, for cases where the desired structure cannot be built up at creation time.

Appending a MockFragment() will append its child nodes instead and clear them from the fragment.

New in version 1.3: Added MockFragment() appending behaviour.

HTMLNode.cloneNode(deep)
Clones the element and its attributes - if deep is true, its child nodes will also be cloned.

New in version 1.3: Added to support cloning by a MockFragment().

HTMLNode.hasChildNodes()
Returns true if this node has any child nodes.

New in version 2.1.

HTMLNode.removeChild(childNode)
Removes the given child Node from this Node and returns it.

Throws an exception if the given node was not one of this node’s children.

New in version 2.1.

Mock Elements

class MockElement(tagName[, attributes[, childNodes]])
A representation of a DOM Element, its attributes and child nodes.

Arguments are as per DOMBuilder.createElement().

Changed in version 2.0: Renamed from “HTMLElement” to “MockElement”

MockElement.toString([trackEvents])
Creates a String containing the HTML representation of the element and its children. By default, any
String children will be escaped to prevent the use of sensitive HTML characters - see the HTML Escap-
ing section for details on controlling escaping.

If true is passed as an argument and any event handlers are found in this object’s attributes during HTML
generation, this method will ensure the element has an id attribute so the handlers can be registered after
the element has been inserted into the document via innerHTML.

If necessary, a unique id will be generated.

Changed in version 1.4: Added the optional trackEvents argument to support registration of event
handlers post-insertion.

MockElement.addEvents()
If event attributes were found when toString(true) was called, this method will attempt to retrieve
a DOM Element with this element’s id attribute, attach event handlers to it and call addEvents() on
any MockElement children.

18 Chapter 3. HTML Mode

DOMBuilder Documentation, Release 2.1.5

New in version 1.4.

MockElement.insertWithEvents(element)
Convenience method for generating and inserting HTML into the given DOM Element and registering
event handlers.

New in version 1.4.

Mock Fragments

New in version 1.3.

In HTML mode, DOMBuilder.fragment() will create MockFragment() objects which mimic the behaviour
of DOM DocumentFragments when appended to another fragment or a MockElement().

class MockFragment([childNodes])
A mock representation of a DOM DocumentFragment and its child nodes.

Changed in version 2.0: Renamed from “HTMLFragment” to “MockFragment”

Arguments

• childNodes (Array) – initial child nodes

MockFragment.toString([trackEvents])
Creates a String containing the HTML representation of the fragment’s children.

Changed in version 1.4: If the trackEvents argument is provided, it will be passed on to any child
MockElements when their MockElement.toString() method is called.

MockFragment.addEvents()
Calls MockElement.addEvents() on any MockElement children.

New in version 1.4.

MockFragment.insertWithEvents(element)
Convenience method for generating and inserting HTML into the given DOM Element and registering
event handlers.

New in version 1.4.

Event Handlers and innerHTML

New in version 1.4.

In DOM mode, Event Handlers specified for an element are registered when it’s being created - these are skipped when
generating HTML, as we would just be inserting the result of calling toString() on the event handling functions,
which wouldn’t make any sense.

To allow you to use the same code to define event handlers regardless of which mode you’re in, the mock DOM objects
support passing in a flag to their toString() methods indicating that you’d like to register event handlers which
have been specified at a later time, after you’ve inserted the generated HTML into the document using innerHTML:

var article = html.DIV({"class":"article"},
html.P({id: "para1", click: function() { alert(this.id) }}, "Paragraph 1"),
html.P({click: function() { alert(this.id) }}, "Paragraph 2")

)
document.getElementById("articles").innerHTML = article.toString(true)

When you pass true into the toString() call as above, DOMBuilder does two things:

3.2. Event Handlers and innerHTML 19

DOMBuilder Documentation, Release 2.1.5

1. Looks at the attributes of each element while generating HTML and determines if they contain any event han-
dlers, storing a flag in the element if this is the case.

2. Ensures the element has an id attribute if event handlers were found. If an id attribute was not provided, a
unique id is generated and stored in the element for later use.

This is the HTML which resulted from the above code, where you can see the generated id attribute in place:

<div class="article">
<p id="para1">Paragraph 1</p>
<p id="__DB1__">Paragraph 2</p>

</div>

Since we know which elements have event handlers and what their ids are, we can use that information to fetch
the corresponding DOM Elements and register the event handlers - you can do just that using MockElement.
addEvents():

article.addEvents()

Now, clicking on either paragraph will result in its id being alerted.

DOMBuilder also provides a bit of sugar for performing these two steps in a single call, MockElement.
insertWithEvents():

article.insertWithEvents(document.getElementById("articles"))

HTML Escaping

HTML mode was initially introduced with backend use in mind - specifically, for generating forms and working with
user input. As such, autoescaping was implemented to protect the developer from malicious user input. The same can
still apply on the frontend, so MockElement.toString() automatically escapes the following characters in any
String contents it finds, replacing them with their equivalent HTML entities:

< > & ' "

If you have a String which is known to be safe for inclusion without escaping, pass it through DOMBuilder.
html.markSafe() before adding it to a MockElement().

DOMBuilder.html.markSafe(value)

Arguments

• value (String) – A known-safe string.

Returns A SafeString object.

There is also a corresponding method to determine if a String is already marked as safe.

DOMBuilder.html.isSafe(value)

Returns true if the given String is marked as safe, false otherwise.

Assuming we’re in HTML mode, this example shows how autoescaping deals with malicious input:

>>> var input = "<span style=\"font-size: 99999px;\" onhover=\"location.href=
→˓'whereveriwant'\">Free money!"
>>> P("Steve the dog says: ", input).toString()
"<p>Steve the dog says: <span style="font-size: 99999px;" onhover="
→˓location.href='whereveriwant'">Free money!</p>"

20 Chapter 3. HTML Mode

DOMBuilder Documentation, Release 2.1.5

But say you have a String containing HTML which you trust and do want to render, like a status message you’ve
just created, or an XMLHTTPRequest response:

>>> var html = DOMBuilder.html
>>> var response = 'You have won the internet!'
>>> html.P('According to our experts: ', response).toString()
'<p>According to our experts: You have won the internet!
→˓</p>'
>>> html.P('According to our experts: ', html.markSafe(response)).toString()
'<p>According to our experts: You have won the internet!</p>'

Warning: String operations performed on a String which was marked safe will produce a String which
is no longer marked as safe.

To avoid accidentally removing safe status from a String, try not to mark it safe until it’s ready for use:

>>> var response = 'Your money is safe with
→˓us!'
>>> function tasteFilter(s) { return s.replace(/Comic Sans MS/gi, 'Verdana') }
>>> var safeResponse = html.markSafe(response)
>>> html.P('Valued customer: ', safeResponse).toString()
'<p>Valued customer: Your money is safe with
→˓us!</p>'
>>> html.P('Valued customer: ', tasteFilter(safeResponse)).toString()
'<p>Valued customer: Your money is
→˓safe with us!</p>'

3.3. HTML Escaping 21

DOMBuilder Documentation, Release 2.1.5

22 Chapter 3. HTML Mode

CHAPTER 4

Templates

New in version 2.1.x - documentation TBD

23

DOMBuilder Documentation, Release 2.1.5

24 Chapter 4. Templates

CHAPTER 5

News for DOMBuilder

2.1.5 / 2012-06-27

• Fixed bug with DOMBuilder.build() not recognising tag names containing numbers.

2.1.4 / 2012-06-27

• Added support for jade-style definition of tags with id and classes to DOMBuilder.build().

• Fixed error creating tags without attributes using DOMBuilder.build() with DOM mode.

2.1.3 / 2012-05-31

• Periods are now allowed on the RHS of ForNode expressions, so it’s possible to look up items to be iterated
over from another template context variable.

2.1.2 / 2012-05-29

• Now using Concur to define TemplateNode so it can more easily be inherited from.

2.1.1 / 2012-02-01

• Fixed browser build - IE7/8 object.hasOwn incompatibility fixed in isomorph.

25

http://jade-lang.com/

DOMBuilder Documentation, Release 2.1.5

2.1.0 / 2012-01-27

• Added DOMBuilder.template, starting implementation of Template mode - the API should not be consid-
ered stable until Version 2.2.

2.0.1 / 2011-08-06

• Fixed nodeName checks in fallback attribute setting code.

• Fixed error setting button/@value in IE6/7 when not using jQuery.

2.0.0 / 2011-07-17

• Output modes are now pluggable, using DOMBuilder.addMode.

• Output mode specific element functions are now available under DOMBuilder.dom and DOMBuilder.
html.

• HTML Mode no longer has any dependency on DOM Mode.

• Updated attribute-setting code based on jQuery 1.6.2.

• Nested Array representations of HTML can now be used to generate output with an output mode, using
DOMBuilder.build.

• Nested Array structures can be built using element functions under DOMBuilder.array.

• Added support for new tags defined in HTML 5.

• You can now specify a mode for DOMBuilder.apply, which will also apply any additional API for the
specified mode, if available.

Backwards-incompatible changes:

• When calling DOMBuilder.map, the default attributes argument is now required - flexible arguments are now
handled by the map functions exposed on element creation functions.

• DOMBuilder.map now passes a loop status object to the given mapping function instead of an index.

• The context argument object to DOMBuilder.apply is now required.

• DOMBuilder.apply no longer adds an NBSP property.

• HTML mode mock DOM objects were renamed to MockElement and MockFragment.

• HTML mode no longer supports XHTML-style closing slashes for empty elements.

• markSafe and isSafe moved to DOMBuilder.html.markSafe and DOMBuilder.html.isSafe,
respectively.

1.4.4 / 2011-05-19

• Additional arguments can now be passed in to withMode to be passed into the function which will be called.

26 Chapter 5. News for DOMBuilder

mailto:button/@value

DOMBuilder Documentation, Release 2.1.5

1.4.3 / 2011-04-26

• Fixed defect doing child checks on null and undefined children.

1.4.2 / 2011-04-12

• Added support for using the innerHTML attribute to specify an element’s entire contents consistently in DOM
and HTML modes.

1.4.1 / 2011-03-04

• Fixed HTML mode bug: event registration now works for nested elements.

• DOMBuilder can now be used as a Node.js module, defaulting to HTML mode.

• Fixed bug: SafeString is no longer used as an attributes object if passed as the first argument to an element
creation function.

1.4.0 / 2011-02-13

• Fixed HTML escaping bugs: attribute names and unknown tag names are now escaped.

• A new insertWithEventsmethod on DOMBuilder.HTMLElement attempts to use innerHTML in a cross-
browser friendly fashion. It’s safe to use this method on elements for which innerHTML is readonly, as it
drops back to creating DOM Elements in a new element and moving them. If jQuery is available, its more
comprehensive html function is used.

• Fixed issue #1 - HTML mode now supports registering event listeners, specified in the same way as DOM mode,
after HTML has been inserted with innerHTML. If necessary, id attributes will be generated in order to target
elements which need event listeners.

• Fixed issue #3 - jQuery is now optional, but will be made use of if present.

1.3.0 / 2011-02-04

• Tag names passed into DOMBuilder.HTMLElement are now lower-cased.

• Added DOMBuilder.elementFunctions to hold element creation functions instead of creating them ev-
ery time DOMBuilder.apply() is called. This also allows for the possibility of using a with statement for
convenience (not that you should!) instead of adding element creation functions to the global scope.

• Added DOMBuilder.fragment.map() to create contents from a list of items using a mapping function
and wrap them in a single fragment as siblings, negating the need for redundant wrapper elements.

• Fixed (Google Code) issue #5 - added HTMLFragment.toString().

• Fixed (Google Code) issue #3 - we now append “nodey” contents (anything with a truthy nodeType) directly
and coerce everything else to Stringwhen appending child nodes, rather than checking for types which should
be coerced to String and appending everything else directly.

• Bit the bullet and switched to using jQuery for element creation and more. DOMBuilder now depends on jQuery
>= 1.4.

5.10. 1.4.3 / 2011-04-26 27

http://nodejs.org

DOMBuilder Documentation, Release 2.1.5

• Fixed (Google Code) issue #2 - nested Array objects in child arguments to DOMBuilder.
createElement() and DOMBuilder.fragment() are now flattened.

• Extracted HTMLNode base class to contain common logic from HTMLElement and HTMLFragment.

• Renamed Tag to HTMLElement.

• DOMBuilder.fragment now works in HTML mode - DOMBuilder.HTMLFragment objects lightly
mimic the DOM DocumentFragment API.

• Added DOMBuilder.map() to create elements based on a list, with an optional mapping function to control
if and how resulting elements are created.

• Added DOMBuilder.fragment(), a utility method for creating and populating DocumentFragment objects.

1.2.0 / 2011-01-21

• Created Sphinx docs.

• Tag objects created when in HTML mode now remember which mode was active when they were created, as
they may not be coerced until a later time, when the mode may have changed.

• Added DOMBuilder.withMode() to switch to HTML mode for the scope of a function call.

• Fixed short circuiting in element creation functions and decreased the number of checks required to determine
which of the 4 supported argument combinations the user passed in.

• Attributes are now lowercased when generating HTML.

• DOMBuilder.isSafe() and DOMBuilder.markSafe() added as the public API for managing escap-
ing of strings when generating HTML.

• Added support for using the DOMBuilder API to generate HTML/XHTML output instead of DOM elements.
This is an experimental change for using the same codebase to generate HTML on the backend and DOM
elements on the frontend, as is currently being implemented in https://github.com/insin/newforms

1.1.0 / 2008-10-10

• An NBSP property is now also added to the context object by DOMBuilder.apply(), for convenience.

• Boolean attributes are now only set if they’re true. Added items to the demo page to demonstrate that you
can now create an explicitly unchecked checkbox and an explicitly non-multiple select.

• Added more IE workarounds for:

– Creating multiple selects

– Creating pre-selected radio and checkbox inputs

1.0.0 / 2008-06-01

• Added support for passing children to element creation function as an Array.

• Added more robust support for registering event handlers, including cross-browser event handling utility meth-
ods and context correction for IE when the event handler is fired.

28 Chapter 5. News for DOMBuilder

https://github.com/insin/newforms

DOMBuilder Documentation, Release 2.1.5

• IE detection is now performed once and once only, using conditional compilation rather than user-agent String
inspection.

5.17. 1.0.0 / 2008-06-01 29

DOMBuilder Documentation, Release 2.1.5

30 Chapter 5. News for DOMBuilder

CHAPTER 6

License

Copyright (c) 2011, Jonathan Buchanan

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documen-
tation files (the “Software”), to deal in the Software without restriction, including without limitation the rights to use,
copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom
the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions of the
Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PAR-
TICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFT-
WARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

Originally based on DomBuilder

Copyright (c) 2006 Dan Webb

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documen-
tation files (the “Software”), to deal in the Software without restriction, including without limitation the rights to use,
copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom
the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions of the
Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PAR-
TICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION

31

DOMBuilder Documentation, Release 2.1.5

OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFT-
WARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

Fallback attribute setting code based on jQuery.attr

Copyright (c) 2011 John Resig, http://jquery.com/

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documen-
tation files (the “Software”), to deal in the Software without restriction, including without limitation the rights to use,
copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom
the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions of the
Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PAR-
TICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFT-
WARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

32 Chapter 6. License

http://jquery.com/

CHAPTER 7

Quick Guide

DOMBuilder provides a convenient, declarative API for generating HTML elements, via objects which contain func-
tions named for the HTML element they create:

with(DOMBuilder.dom) {
var article =
DIV({'class': 'article'}
, H2('Article title')
, P('Paragraph one')
, P('Paragraph two')
)

}

Every element function also has a map function attached to it which allows you to easily generate content from a list
of items:

var el = DOMBuilder.html
function shoppingList(items) {
return el.OL(el.LI.map(items))

}

>>> shoppingList(['Cheese', 'Bread', 'Butter'])
CheeseBreadButter

You can control map output by passing in a callback function:

function opinionatedShoppingList(items) {
return el.OL(el.LI.map(items, function(item, attrs, loop) {
if (item == 'Cheese') attrs['class'] = 'eww'
if (item == 'Butter') return el.EM(item)
return item

}))
}

33

DOMBuilder Documentation, Release 2.1.5

>>> opinionatedShoppingList(['Cheese', 'Bread', 'Butter'])
<li class="eww">CheeseBreadButter

If you want to use this API to go straight to a particular type of output, you can do so using the functions defined in
DOMBuilder.dom and DOMBuilder.html, as demonstrated above.

If you want to be able to switch freely between output modes, or you won’t know which kind of output you need
until runtime, you can use the same API via DOMBuilder.elements, controlling what it outputs by setting the
DOMBuilder.mode flag to 'dom' or 'html', or calling a function which generates content using DOMBuilder.
withMode():

var el = DOMBuilder.elements
function shoutThing(thing) {
return el.STRONG(thing)

}

>>> DOMBuilder.mode = 'html'
>>> shoutThing('Hello!').toString()
Hello!
>>> DOMBuilder.withMode('dom', shoutThing, 'Hey there!')
[object HTMLStrongElement]

This is useful for writing libraries which need to support outputting both DOM Elements and HTML Strings, or for
unit-testing code which normally generates DOM Elements by flipping the mode in your tests to switch to HTML
String output.

DOMBuilder also supports using its output modes with another common means of defining HTML in JavaScript code,
using nested lists (representing elements and their contents) and objects (representing attributes), like so:

var article =
['div', {'class': 'article'}
, ['h2', 'Article title']
, ['p', 'Paragraph one']
, ['p', 'Paragraph two']
]

You can generate output from one of these structures using DOMBuilder.build(), specifying the output mode:

>>> DOMBuilder.build(article, 'html').toString()
<div class="article"><h2>Article title</h2><p>Paragraph one</p><p>Paragraph two</p></
→˓div>

>>> DOMBuilder.build(article, 'dom').toString()
[object HTMLDivElement]

You can also generate these kinds of structures using the element functions defined in DOMBuilder.array .

This is just a quick guide to what DOMBuilder can do - dive into the rest of the documentation to find out about the
rest of its features, such as:

• Registering Event Handlers.

• Making it more convenient to work with Event Handlers and innerHTML.

• Populating Document Fragments with content in a single call.

• Being able to use fragments in HTML mode via Mock DOM Objects.

• HTML Escaping in HTML mode.

34 Chapter 7. Quick Guide

CHAPTER 8

Installation

Browsers

DOMBuilder is a modular library, which supports adding new output modes and feature modes as plugins.

The available components are:

core.js Core library

dom.js DOM output mode - adds DOMBuilder.dom

html.js HTML output mode - adds DOMBuilder.html

template.js Template feature mode - adds DOMBuilder.template

Compressed Builds

Compressed builds of DOMBuilder are available to suit various needs:

DOM and HTML For creation of mixed content, with DOM Mode as the default output format.

DOM only For creation of DOM Elements, with DOM Mode as the default output format.

HTML only For creation of HTML Strings, with HTML Mode as the default output format.

Templates For templating, with mixed output and DOM Mode as the default output format.

Dependencies

All required dependencies from isomorph are bundled into the builds above.

If jQuery (>= 1.4) is available, DOMBuilder will make use of it when creating DOM Elements and setting up their
attributes and event handlers. Otherwise, DOMBuilder will fall back to using some less comprehensive workarounds
for cross-browser DOM issues and use the traditional event registration model for compatibility.

Changed in version 1.4: jQuery was made optional, with the caveat that cross-browser support will be less robust.

35

https://github.com/insin/DOMBuilder/tree/master/lib/dombuilder/core.js
https://github.com/insin/DOMBuilder/tree/master/lib/dombuilder/dom.js
https://github.com/insin/DOMBuilder/tree/master/lib/dombuilder/html.js
https://github.com/insin/DOMBuilder/tree/master/lib/dombuilder/template.js
https://github.com/insin/DOMBuilder/raw/master/dist/DOMBuilder.min.js
https://github.com/insin/DOMBuilder/raw/master/dist/DOMBuilder.dom.min.js
https://github.com/insin/DOMBuilder/raw/master/dist/DOMBuilder.html.min.js
https://github.com/insin/DOMBuilder/raw/master/dist/DOMBuilder.template.min.js
https://github.com/insin/isomorph
http://jquery.com
http://www.quirksmode.org/js/events_tradmod.html

DOMBuilder Documentation, Release 2.1.5

Changed in version 2.1: There are now some required utility dependencies, which are bundled with the browser builds.

Node.js

New in version 1.4.1.

DOMBuilder can be installed as a Node.js module using npm. The Node.js build includes Templates and HTML Mode,
and has HTML as the default output format.

Install:

npm install DOMBuilder

Import:

var DOMBuilder = require('DOMBuilder')

36 Chapter 8. Installation

http://nodejs.org
http://npmjs.org/

Index

D
DOMBuilder.addMode() (DOMBuilder method), 7
DOMBuilder.apply() (DOMBuilder method), 9
DOMBuilder.array (DOMBuilder attribute), 11
DOMBuilder.build() (DOMBuilder method), 10
DOMBuilder.createElement() (DOMBuilder method), 6
DOMBuilder.dom (DOMBuilder attribute), 13
DOMBuilder.elements (DOMBuilder attribute), 3
DOMBuilder.fragment() (DOMBuilder method), 6
DOMBuilder.fragment.map() (DOMBuilder.fragment

method), 14
DOMBuilder.html (DOMBuilder attribute), 17
DOMBuilder.html.isSafe() (DOMBuilder.html method),

20
DOMBuilder.html.markSafe() (DOMBuilder.html

method), 20
DOMBuilder.map() (DOMBuilder method), 5
DOMBuilder.mode (DOMBuilder attribute), 8
DOMBuilder.textNode() (DOMBuilder method), 6
DOMBuilder.withMode() (DOMBuilder method), 8

H
HTMLNode() (class), 17
HTMLNode.appendChild() (HTMLNode method), 18
HTMLNode.childNodes (HTMLNode attribute), 18
HTMLNode.cloneNode() (HTMLNode method), 18
HTMLNode.firstChild (HTMLNode attribute), 18
HTMLNode.hasChildNodes() (HTMLNode method), 18
HTMLNode.removeChild() (HTMLNode method), 18

M
MockElement() (class), 18
MockElement.addEvents() (MockElement method), 18
MockElement.insertWithEvents() (MockElement

method), 19
MockElement.toString() (MockElement method), 18
MockFragment() (class), 19
MockFragment.addEvents() (MockFragment method), 19

MockFragment.insertWithEvents() (MockFragment
method), 19

MockFragment.toString() (MockFragment method), 19

37

	DOMBuilder Core
	DOM Mode
	HTML Mode
	Templates
	News for DOMBuilder
	License
	Quick Guide
	Installation

